H=-16t^2+256t+12

Simple and best practice solution for H=-16t^2+256t+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+256t+12 equation:



=-16H^2+256H+12
We move all terms to the left:
-(-16H^2+256H+12)=0
We get rid of parentheses
16H^2-256H-12=0
a = 16; b = -256; c = -12;
Δ = b2-4ac
Δ = -2562-4·16·(-12)
Δ = 66304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{66304}=\sqrt{256*259}=\sqrt{256}*\sqrt{259}=16\sqrt{259}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-256)-16\sqrt{259}}{2*16}=\frac{256-16\sqrt{259}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-256)+16\sqrt{259}}{2*16}=\frac{256+16\sqrt{259}}{32} $

See similar equations:

| 8+7x+3=74 | | y+4y+y=18 | | 2x-37=131 | | 4x+(—3)=5x+3 | | 4(v+4)=4v-8 | | 15u-15u+3u+u-u=9 | | 7(3x+2)=28 | | 4(v+4)=-4-8 | | 7w-40=51.75 | | 3=1⁄3c+2 | | 8h-2h=12 | | 3v=2902 | | 10/69=n/6 | | 30+4x=3+13x | | g/8=17 | | 2v-4v+16v-10v=-12 | | 0.2=10x/ | | V=u-15u= | | (706.5)x(360/x)=98.125 | | 7+k=13 | | 165+6y=7y+15 | | 7w-40=1/2((4w-18)+(w+19)) | | b+3=96 | | 90+90+102.3+x=360 | | (706.5)x(x/360)=98.125 | | 2x+(-3x)+5=6 | | 12j-11j=13 | | 6(x+4)=-7 | | x=10=20 | | 8.5/1.2=x/6.5 | | 2y-5=3-9 | | 2a+0.75=4 |

Equations solver categories